
P1: FZN

International Journal of Theoretical Physics [ijtp] pp543-ijtp-376833 July 13, 2002 17:32 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 41, No. 7, July 2002 (C© 2002)

Squeezing Effects of a Mesoscopic Dissipative
Coupled Circuit

Ying-Hua Ji1,2 and Min-Sheng Lei1

Received January 10, 2002

We study the quantum effect of a mesoscopic dissipative-coupledRLC circuit of the
capacitances. We find that if the quantum dissipative system is in the vacuum state at
the initial time, it will evolve to a squeezed coherent state under the effect of an external
pulse source because of the presence of the coupling and damping.
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1. INTRODUCTION

Owing to the development of nanometer techniques and microelectronics,
the trend of the miniaturization of integrated circuits and electronic components
towards atomic scale becomes stronger and stronger. When the phase coherence
length of the charge-carrier approaches the Fermi wavelength, quantum effects
must be considered (Li and Chen, 1996a,b). Many researches on quantum effects
in nondissipative mesoscopic circuits have been done (Leiet al., 2001; Yuet al.,
1998; Yu and Liu, 1998).

Recently, some scholars have studied the influence of a resistance whose
macroscopic parameter isR on the quantum effect in the dissipative mesoscopic
circuit (Wanget al., 2000; Zhanget al., 1998). In these previous works, it can
be assumed that the classical equation of motion of theRLCcircuit is exactly the
same as that of a damped harmonic oscillator.

There is no doubt that theRLC circuit is a simplest example of the dissi-
pative system. Feynman and Vernon have come up with a theory of the mutual
action between the quantum system and environment. In their theory, they sug-
gest that the oscillators are in a bath to describe the system interacting with the
environment. According to this theory, Calderia and Leggett (Sun and Yu, 1995;
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Yu and Sun, 1994) consider a damping harmonic oscillator as a dissipative system
in which the harmonic oscillator couples to an environment that can be looked
upon as a bath of many harmonic oscillators. On this base, they obtained the
effective Hamiltonian of a damped harmonic oscillator system that is now called
the Calderia–Kani (CK) Hamiltonian.

As everyone knows, the resistance of a circuit results from the scattering of
conduction electrons by the crystal lattice, and the lattice vibration is equivalent to
a group of harmonic oscillators. So the mesoscopicRLCcircuit can be regarded as
an interactive system composed of an electromagnetic harmonic oscillator coupled
to a bath of lattice oscillators (Jiet al., 2002). Therefore the effective Hamiltonian
of theRLCcircuit is the CK Hamiltonian. With the canonical commutation relation
[q, p] = i h, this Hamiltonian automatically yields the classical motion equation
of theRLCcircuit.

We study the quantum effects of a mesoscopic dissipativeRLCcircuit coupled
with a capacitance in this paper. We will suggest the Hamiltonian of the dissipative-
coupled circuit. Using the canonical quantization method from the classical motion
equations, we obtain the quantum fluctuations of charge and current in the squeez-
ing state. Furthermore, we have investigated the squeezing effect of the circuit.

2. DIAGONALIZE HAMILTONIAN

Now, we study two meshes of theRLCcoupled circuit of capacitors (see Fig. 1).
It is well known that the classical motion equations of the mutual-
inductance circuit with a source are

L1q̈1+ R1q̇1+ C−1(q1− q2)+ C−1
1 q1 = ε(t), (1)

L2q̈2+ R2q̇2− C−1(q1− q2)+ C−1
2 q2 = 0. (2)

Fig. 1. Coupled circuit of capacitors.
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whereL j , Rj , andCj stand for inductance, resistance, and capacitance of two
meshes, respectively, andC is the common capacitance parameter; andqj repre-
sents the electric charge.

To simplify the problem, we suppose that

R1L−1
1 = R2L−1

2 = 2β. (3)

According to the Calderia and Leggett’s quantization scheme for aRLC circuit,
whenε(t) = 0, we can obtain the classical Hamiltonian of this system from above
equations.

H (q) = e−2βt

[
p2

1

2L1
+ p2

2

2L2

]
+ e2βt

[
q2

1

2C1
+ q2

2

2C2
+ (q1− q2)2

2C

]
. (4)

From the Hamiltonian, the conjugate momentapj can be gotten as follows

pj = e2βt L j q̇j ( j = 1, 2),

where the variablesqj andpj play the part of the generalized coordinates and mo-
menta, respectively. Equation (4) represents a pair of damping harmonic oscillators
which are coupling each other. To simplify the Hamiltonian equation (4), now, let
us transform the variables (qj , pj ) into the variables (Qj , Pj ). The transformations
of the coordinate and momenta (Leiet al., 2001; Zhanget al., 2001) are(

Q1

Q2

)
= eβt

(
Acosϕ −B sinϕ
Asinϕ B cosϕ

)(
q1

q2

)
, (5)

(
P1

P2

)
= e−βt

(
B cosϕ −Asinϕ
B sinϕ Acosϕ

)(
p1

p2

)
+ β eβt

(√
L1L2 0
0

√
L1L2

)(
q1

q2

)
, (6)

where

B4 = A−4 = L−1
1 L2, (7)

cot(2ϕ) = C + C1

2C1

√
L2

L1
− C + C2

2C2

√
L1

L2
. (8)

Then we can transform Eq. (4) into the separable form by using Eqs. (5)–(8),
that is,

H (Q) = 1

2
√

L1L2
P2

1 +
1

2
√

L1L2
P2

2 +
1

2
k1Q2

1+
1

2
k2Q2

2, (9)
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where

k1 = B2
(
C−1+ C−1

1

)
cos2 ϕ + A2

(
C−1+ C−1

2

)
sin2 ϕ + C−1 sin 2ϕ − α1β

2

(10)

k2 = B2
(
C−1+ C−1

1

)
sin2 ϕ + A2

(
C−1+ C−1

2

)
cos2 ϕ − C−1 sin 2ϕ − α1β

2.

(11)

On the basis of the standard quantization principle we can quantize the system.
First of all, we assume the following commutation relations are valid:

[ Q̂ j , P̂k] = i hδ jk , [Q̂ j , Q̂k] = [ P̂ j , P̂k] = 0 ( j , k = 1, 2).

Thus we can quantize the system by means ofQj and Pk ( j , k = 1, 2). After
quantization the Hamiltonian of system transforms into the form of operator, that is,

Ĥ (Q) = 1

2
√

L1L2
P̂2

1+
1

2
√

L1L2
P̂2

2+
1

2
k1Q̂2

1+
1

2
k2Q̂2

2. (12)

Obviously, above formula represents two independent quantum harmonic oscil-
lators. Therefore we may easily obtain the quantum energy levels of the system,
coupledRLCcircuit,

E = hÄ1

(
n1+ 1

2

)
+ hÄ2

(
n2+ 1

2

)
, (n1, n2 = 0, 1, 2,. . .), (13)

where

Ä2
1 =

k1√
L1L2

, Ä2
2 =

k2√
L1L2

. (14)

For an independent mesoscopicRLCcircuit without any mutual coupling, if
it is in the vacuum state at the initial time, it will evolve to a coherent state under
the effect of an external source. For a mesoscopic coupled circuit, if the system
is in the vacuum state at the initial time, it will evolve to a squeezed coherent
state because of presence of the coupling, which had been described in Leiet al.
(2001). Comparing Eqs. (5) and (6), we can see that the transformation contains
not only rotation transformation but also squeezing transformation. For example,
as the factor (L1/L2)1/4 appears inQ1, it’s the inverse (L2/L1)1/4 appears inP1.
It means the squeezing of the charge and one of its canonical conjugate current
are reversed each other. This squeezing originates from the coupling effect and
damping. So, when a pulse signal with a finite amplitude enters the mesoscopic
circuit at t = 0, if the pulse widthτ → 0, the circuit will evolve to a squeezed
coherent state from its initial vacuum state.
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3. QUANTUM FLUCTUATION

The squeezed vacuum state|0, 0〉r1,r2 takes the following form in the particle
number representation

|0, 0〉r1,r2 = sech1/2(r1)
∞∑

n=0

−ei θ1 tanh(r1)n[(2n)!] 1/2

n!2n
|2n〉1

⊗ sech1/2(r2)
∞∑

m=0

−ei θ2 tanh(r2)m[(2m)!] 1/2

m!2m
|2m〉2, (15)

wherer j andθ j ( j = 1, 2) stand for the squeezing magnitude and phase parameters.
In this squeezed vacuum state, the mean value and mean square value of charges
Qj and their conjugate variablesPj are, respectively,

Qj = 0, Pj = 0, (16)

Q2
j =

h

2Ä j
√

L1L2
sech(r j )

×
∞∑

n=0

(2n)! tanh2n(r j ) · [4n+ 1− 2(2n+ 1) cos(θ j ) tanh(r j )]

(n!)222n
(17)

P2
j =

Ä j h
√

L1L2

2
sech(r j )

×
∞∑

n=0

(2n)! tanh2n(r j ) · [4n+ 1+ 2(2n+ 1) cos(θ j ) tanh(r j )]

(n!)222n

( j = 1, 2). (18)

Using Eqs. (5), (6), and (16)–(18), we may obtain the mean value and the mean
square value of chargesqj and their conjugate variablespj , respectively, in the
squeezed state

q1 = q2 = 0, p1 = p2 = 0, (19)

(1q̂1)2 = e−2βt h

2L1

(
x1

cos2 ϕ

Ä1
+ x2
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)
, (20)
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2L2

(
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Ä1
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Ä2

)
, (21)

(1 p̂1)2 = e2βt hL1

2

[
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(
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1

)
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(
Ä2+ β2Ä−1

2

)
sin2 ϕ

]
, (22)

(1 p̂2)2 = e2βt hL2

2

[
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(
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1

)
sin2 ϕ + y2

(
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2

)
cos2 ϕ

]
, (23)
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where

xj = sech(r j )
∞∑

n=0

(2n)! tanh2n(r j ) · [4n+ 1− 2(2n+ 1) cos(θ j ) tanh(r j )]

(n!)222n
,

(24)

yj = sech(r j )
∞∑

n=0

(2n)! tanh2n(r j ) · [4n+ 1+ 2(2n+ 1) cos(θ j ) tanh(r j )]

(n!)222n
,

( j = 1, 2). (25)

It can be seen thatxj and yj represent the dimensionless parameters of charges
and their conjugate variables, respectively. When there is no power in the circuit,
it can be found from above equations that the averages of the chargesqj and their
conjugate variablespj are zero, but their mean square values are not all zero in
the squeezed vacuum state. And the uncertainty relation of mesh is

(1q1)2(1p1)2 6= (1q2)2(1p2)2

4. SQUEEZED EFFECT

Lei et al.(2001) and Fan and Pan (1998) have pointed out that the squeezing
effect in nondissipative circuit originates from the coupling effect. The squeezing
magnitude parameters are connected with the circuit parameters and the coupling
parameter as well. So, we may obtain different squeezing by controlling both the
circuit parameters and the coupling parameter. The changes ofxj andyj with the
squeezed magnituder are drawn in Figs. 2. and 3.

These curves clearly indicate that whenθ j = 0, xj decreases with increase of
r j , but whenθ j = π, xj increases. And yet the changes ofyj are just contrary to
xj . As for the dissipative coupling circuits, from Eqs. (20) to (23), we may observe
that the squeezing effect results from not only the coupling but also the damping.

Fig. 2. Changes ofxj vs. the squeezed magnituder (a) θ = 0, (b)θ = π .
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Fig. 3. Changes ofyj vs. the squeezed magnituder (a) θ = 0, (b)θ = π .

And the latter is more important because the influence of damping factor upon the
squeezing effect is an exponent’s function. If the circuit parameters are all fixed,
the damping factor becomes the only one influencing upon the squeezing effect of
the circuit. Now we consider a particular situation, whenr j = 0 and the dissipative
system is in a vacuum state, the quantum fluctuations of the charge and current are
respectively

(1q̂1)2 = e−2βt h

2L1

(
cos2 ϕ

Ä1
+ sin2 ϕ

Ä2

)
, (26)

(1q̂2)2 = e−2βt h

2L2

(
sin2 ϕ

Ä1
+ cos2 ϕ

Ä2

)
, (27)

(1 p̂1)2 = e2βt hL1

2

[(
Ä1+ β2Ä−1

1

)
cos2 ϕ + (Ä2+ β2Ä−1

2

)
sin2 ϕ

]
, (28)

(1 p̂2)2 = e2βt hL2

2

[(
Ä1+ β2Ä−1

1

)
sin2 ϕ + (Ä2+ β2Ä−1

2

)
cos2 ϕ

]
. (29)

If the circuit parameters and coupling parameter are fixed, the all factors, except
for the exponent factor, are constant in the above equations. With the increase of
time, the quantum fluctuation of charge decreases but the quantum fluctuation of
current increases continuously. Their uncertainty relations are

(1q1)2(1p1)2 = (1q2)2(1p2)2

which has nothing to do with time and kept unchanged.
At the squeezed vacuum state, generally speaking, when the circuit parameters

and coupling parameter are fixed, the squeezing angle is regulated to control the
squeezing effect. From Eqs. (20) to (25) as well as Figs. 2 and 3, we may find
out that whenθ j = 0, the coupling and damping affect the quantum fluctuation
in the same direction, a much deeper squeezing is gained. But whenθ j = π , the
coupling will destroy the squeezing of charge originating from the damp. As for
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the quantum fluctuation of current, we may gain a similar influence, but the result
is just contrary.

5. CONCLUSION

Our study indicates that when the circuit parameters and coupling parameter
are totally fixed, the quantum dissipative system will evolve to a squeezed coherent
state from the initial vacuum state under the effect of an external source. The
squeezing effect originates from the coupling effect and damping, and it is related
to the squeezing angle.
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